

AbraSilver Continues to Drill High-Grade Gold at Diablillos, with 36 Metres of 2.32 g/t Gold Intersected at Oculto East

Cerro Viejo Drilling Confirms Broad Gold-Copper Mineralization in Upper Porphyry System

Toronto – November 19, 2025: AbraSilver Resource Corp. (TSX: ABRA; OTCQX: ABBRF) ("AbraSilver" or the "Company") is pleased to announce new assay results from four drill holes from the ongoing Phase V exploration program at its wholly-owned Diablillos project in Argentina (the "Project"). These latest results continue to expand oxide-hosted high-grade gold mineralization at Oculto East while also confirming the presence of near-surface broad gold and copper mineralization in the upper portions of a porphyry system at Cerro Viejo.

Highlight Drill Results – Widths are reported as drilled; true widths are not yet known.

- **Cerro Viejo**: Both holes drilled at Cerro Viejo intersected continuous gold mineralization from surface, interpreted to represent the upper levels of a mineralized porphyry system:
 - o DDH 25-050: 128.0 metres ("m") at 0.24 g/t gold from surface
 - o DDH 25-056: 200.0 m grading 0.32 g/t gold from surface, including:
 - **10.0 m at 1.10 g/t** (oxides, from 21 m downhole)
 - 11.0 m at 0.33 g/t gold and 0.46% copper (sulphides, from 49 m)
- Oculto East: Both holes intersected broad zones of oxide gold mineralization, with DDH 25-078
 returning multiple high-grade intervals and DDH 25-081 confirming additional consistent gold
 zones within the broader mineralized corridor, which drilling continues to expand. Importantly,
 holes 78 and 81 represent two distinct sub-parallel zones of mineralization at Oculto East, located
 approximately 500 metres apart, further demonstrating the scale and continuity of this system.
 - DDH 25-078 returned several high-grade gold intercepts within a ~100-metre-thick mineralized package, including:
 - **25.0 m grading 1.67 g/t gold** (from 178 m) including **2.0 m at 11.14 g/t gold**;
 - 6.0 m grading 4.64 g/t gold (211 m);
 - 36.0 m grading 2.32 g/t gold (240 m) including 11.0 m grading 3.76 g/t gold
 - DDH 25-081 also encountered several oxide gold zones, including:
 - **8.0 m grading 0.76 g/t gold** (267 m);
 - 10.0 m grading 0.72 g/t gold (341 m);

John Miniotis, President and CEO, commented, "Our drilling continues to deliver excellent results across multiple high-priority targets at Diablillos. At Oculto East, we are consistently intersecting thick zones of high-grade oxide gold mineralization that continue to expand the known mineralized footprint. In parallel, the initial results from Cerro Viejo highlight the potential for a robust gold-copper porphyry system. Together, these results underscore the strong growth potential across the broader Diablillos project."

Dave O'Connor, Chief Geologist, commented, "Oculto East continues to deliver strong, consistent oxide gold intercepts, pointing to a large, continuous extension of the mineralized system. At the same time, drilling at Cerro Viejo confirms we are in the upper levels of a significant gold-copper porphyry, and we are currently drilling a deeper hole targeting the potential porphyry source."

Table 1 – Summary of Key Drill Intercepts: Cerro Viejo & Oculto East

Intercepts greater than 25 gram-metres gold shown in bolded text:

Drill Hole	Area	From (m)	To (m)	Туре	Interval (m)	Ag g/t	Au g/t	Cu %
DDH-25-050	Cerro Viejo	1.0	129.0	Mixed	128.0	-	0.24	_
DDH-25-056	Cerro Viejo	0.0	200.0	Mixed	200.0	-	0.32	0.04
	Including	21.0	31.0	Oxides	10.0	-	1.10	-
	Including	49.0	60.0	Sulphides	11.0	5.3	0.33	0.46
DDH-25-078	Oculto East	178.0	203.0	Oxides	25.0	10.1	1.67	-
	Including	190.0	192.0	Oxides	2.0	29.8	11.14	-
		211.0	217.0	Oxides	6.0	16.0	4.64	-
		221.0	222.0	Oxides	1.0	3.9	1.32	-
		240.0	276.0	Oxides	36.0	12.1	2.32	-
	Including	265.0	276.0	Oxides	11.0	13.7	3.76	-
		304.0	306.0	Oxides	2.0	31.5	0.62	
DDH-25-081	Oculto East	210.0	220.0	Oxides	10.0	2.0	0.35	-
		246.0	249.0	Oxides	3.0	4.8	0.74	-
		261.0	262.0	Oxides	1.0	3.4	1.51	-
		267.0	275.0	Oxides	8.0	2.6	0.76	-
		325.0	329.0	Oxides	4.0	4.0	0.85	-
		341.0	351.0	Oxides	10.0	4.6	0.72	-
		363.0	364.0	Oxides	1.0	8.7	1.09	-

Note: All results in this news release are rounded. Assays are uncut & undiluted. Widths are drilled widths, not true widths. True widths are unknown.

ABRASILVER CERRO VIEJO Section line OCULTO DDH-25-078 OCULTO DDH-25-081 Section line

Figure 1 -Plan View of Drill Results

Additional Details on Drill Results - Cerro Viejo

The two holes drilled at Cerro Viejo both encountered broad zones of gold mineralization, with associated copper within dacitic porphyry units. The gold mineralisation is hosted in d-type quartz-pyrite veins in sericite-pyrite alteration of the host rock, indicative of porphyry style alteration. These results confirm that the current drilling is testing the upper portions of a large porphyry system. Deeper drilling is underway to evaluate the underlying porphyry source responsible for the mineralization.

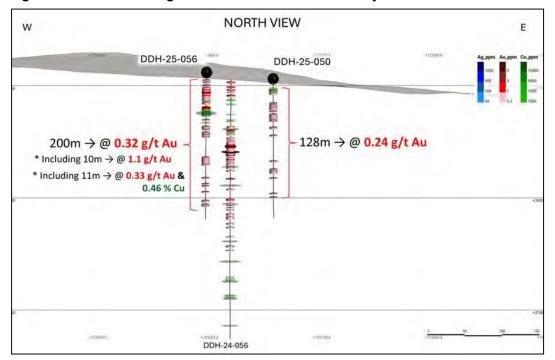


Figure 2 - Section Through Latest Drill Holes at Cerro Viejo

Note: Widths are drilled widths, not true widths. True widths are unknown.

Drill hole DDH 24-056 has been previously announced by the Company and are shown here for illustrative purposes.

Additional Details on Drill Results - Oculto East

Drilling at Oculto East continues to demonstrate broad, continuous intervals of oxide-hosted gold mineralization extending beyond the eastern margin of the current conceptual open pit. The standout intercepts in DDH 25-078 reflect strong grade continuity across multiple stacked zones within a large, coherent mineralized envelope. Importantly, holes 78 and 81 outline two separate mineralized zones located approximately 500 metres apart, underscoring both the scale of the system and the potential for multiple parallel high-grade structures. This spatial separation further highlights the robustness and continuity of mineralization across Oculto East. Additional assay results from nearby holes are pending, and drilling is ongoing to further delineate the extent of this expanding zone.

A deep hole (completed to a downhole depth of 1,025m) has been drilled at Oculto East to test porphyry style mineralisation beneath the high sulphide epithermal zone. It was targeted to intercept elevated molybdenum mineralisation associated with gold intersected in shallower drilling. Elevated molybdenum grades are an important vector and strong geological marker when targeting potential porphyry centers, and the molybdenum is interpreted as representing the cap above a porphyry system. Assay results are pending and will be released once received.

DDH-25-078

Figure 3 – Section Through Latest Drill Holes at Oculto East

Note: Widths are drilled widths, not true widths. True widths are unknown.

Drill holes: DDH 25-024, 25-077 and 24-064 have been previously announced by the Company and are shown here for illustrative purposes.

RIGI Application and Definitive Feasibility Study ("DFS")

The Company has now completed all required work for the application under Argentina's Large Investment Incentive Regime ("RIGI"), which is expected to be formally submitted in the near-term. RIGI is a new federal investment framework designed to attract and accelerate major development projects by providing long-term fiscal stability and a competitive suite of tax, customs, and foreign-exchange benefits.

The design and engineering work for the DFS is nearing completion and planning for early works activities is advancing on schedule. Metallurgical test work and all site investigation activities are completed, with final optimization parameters established for the updated open pit mine plan. The technical team is preparing for third party reviews at the 80% completion milestone over the coming weeks. The DFS remains on track for completion in H1 2026, at which time the project will be ready to advance with early works activities and a final investment decision.

Collar Data

Hole Number	UTM Coordinates		Elevation	Azimuth	Dip	Depth (m)	Area	
DDH 25-050	723697	7202736	4,059	0	-75	190	Cerro Viejo	
DDH 25-056	723608	7202742	4,068	0	-80	200	Cerro Viejo	
DDH 25-078	720763	7199638	4,335	180	-65	326	Oculto East	
DDH 25-081	721343	7199382	4,591	110	-60	365	Oculto East	

About Diablillos

The Diablillos property is located within the Puna region of Argentina, in the southern part of Salta Province along the border with Catamarca Province, approximately 160 km southwest of the city of Salta and 375 km northwest of the city of Catamarca. AbraSilver acquired the property in 2016, which comprises 15 contiguous and overlapping mineral concessions with excellent year-round road access.

Exploration to date has outlined multiple occurrences of silver-gold oxide mineralization at Oculto, JAC, Laderas, and Fantasma, located within a 500 m to 1.5 km distance surrounding the Oculto/JAC epicentre.

To date, over 150,000 metres have been drilled on the property, which continues to demonstrate the strong growth potential of shallow, oxide-hosted silver and gold resources. In addition, a large porphyry complex is centered approximately 4 km northeast of Oculto which includes outcropping porphyry intrusions within a major zone of alteration and associated gold rich epithermal mineralization.

Comparatively nearby examples of high sulphidation epithermal deposits include: La Coipa (Chile); Yanacocha (Peru); El Indio (Chile); Lagunas Nortes/Alto Chicama (Peru) Veladero (Argentina); and Filo del Sol (Argentina). The most recent Mineral Resource estimate for Diablillos is shown in Table 2:

Table 2 - Diablillos Mineral Resource Estimate - As of July 21, 2025

	Zone	Category	Tonnes (000 t)	Ag (g/t)	Au (g/t)	AgEq (g/t)	Contained Ag (000 Oz Ag)	Contained Au (000 Oz Ag)	Contained AgEq (000 Oz Ag)
Tank Leach	Oxides	Measured	26,545	119	0.71	183	101,564	604	156,487
		Indicated	46,584	56	0.63	114	84,430	948	170,592
		Measured & Indicated	73,129	79	0.66	139	185,994	1,553	327,078
		Inferred	9,693	34	0.57	86	10,616	176	26,647
Heap Leach	Oxides	Measured Indicated	6,673 24,102	16 12	0.14 0.17	25 23	3,486 9,163	30 133	5,342 17,506
		Measured & Indicated	30,774	13	0.16	23	12,649	162	22,848
		Inferred	10,024	9	0.20	21	2,811	64	6,850
Total	Oxides	Measured	33,218	98	0.59	152	105,050	634	161,829
		Indicated	70,686	41	0.48	83	93,593	1,081	188,098
		Measured & Indicated	103,904	59	0.51	105	198,643	1,715	349,927
		Inferred	19,628	21	0.38	53	13,427	241	33,496

- Footnotes for Tank Leach Resource:
- 1. Mineral Resources are not Mineral Reserves and have not demonstrated economic viability.
- 2. The formula for calculating AgEq is as follows: Silver Eq Oz = Silver Oz + Gold Oz x (Gold Price/Silver Price) x (Gold Recovery/Silver Recovery).
- The Mineral Resource model was populated using Ordinary Kriging grade estimation within a three-dimensional block model and mineralized zones defined by wireframed solids, which are a combination of lithology and alteration domains. The 1m composite grades were capped where appropriate.
- The Mineral Resource is reported inside a conceptual Whittle open pit shell derived using US\$ 27.50/oz Ag price, US\$2,400/oz Au price, 83% process recovery for Ag, and 87% process recovery for Au.
- 5. The constraining open pit optimization parameters used were US \$1.94/t mining cost, US \$22.96/t processing cost, US \$3.32/t G&A cost, and average 51-degree open pit slopes.
- 6. The MRE has been categorized in accordance with the CIM Definition Standards (CIM, 2014).
- 7. A Net Value per block [NVB] calculation was used to constrain the Mineral Resource, determine the "Benefits = Income-Cost", where, Income = [(Au Selling Price (US\$/oz) Au Selling Cost (USD/Oz)) x (Au grade (g/t)/31.1035)) x Au Recovery (%)] + [(Ag Selling Price (US\$/oz) Ag Selling Cost (USD/Oz)) x (Ag grade (g/t)/31.1035)) x Ag Recovery (%)] and Cost = Mining Cost (US\$/t) + Process Cost (US\$/t) + Transport Cost (US\$/t) + G&A Cost (US\$/t) + [Royalty Cost (%) x Income]
- 8. The Mineral Resource is sub-horizontal with sub-vertical feeders and a reasonable prospect for eventual economic extraction by open pit and tank leach processing methods.
- In-situ bulk density were assigned to each model domain, according to samples averages for each lithology domain, separated by alteration zones and subset by oxidation.
- 10. All tonnages reported are dry metric tonnes and ounces of contained gold are troy ounces.
- 11. Mining recovery and dilution factors have not been applied to the Mineral Resource estimates.
- 12. The Mineral Resource was estimated by Luis Rodrigo Peralta, B.Sc., FAusIMM CP (Geo), Independent Qualified Person under NI 43-101.
- 13. Mr. Peralta is not aware of any environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues that could materially affect the potential development of the Mineral Resource.
- 14. All figures are rounded to reflect the relative accuracy of the estimates. Minor discrepancies may occur due to rounding to appropriate significant figures.
 - Footnotes for Heap Leach Resource:
- 1. Mineral Resources are not Mineral Reserves and have not demonstrated economic viability.
- 2. The formula for calculating AgEq is as follows: Silver Eq Oz = Silver Oz + Gold Oz x (Gold Price/Silver Price) x (Gold Recovery/Silver Recovery).
- 3. The Mineral Resource model was populated using Ordinary Kriging grade estimation within a three-dimensional block model and mineralized zones defined by wireframed solids, which are a combination of lithology and alteration domains. The 1m composite grades were capped where appropriate.
- 4. The Mineral Resource is reported inside a conceptual Whittle open pit shell derived using US\$ 27.50/oz Ag price, US \$2,400/oz Au price, 80% process recovery for Ag, and 58% process recovery for Au.
- 5. The constraining open pit optimization parameters used and overall operational cost of US \$11.31/t.
- 6. The MRE has been categorized in accordance with the CIM Definition Standards (CIM, 2014).

- 7. A Net Value per block [NVB] calculation was used to constrain the Mineral Resource, determine the "Benefits = Income-Cost", where, Income = [(Au Selling Price (US\$/oz) Au Selling Cost (USD/Oz)) x (Au grade (g/t)/31.1035)) x Au Recovery (%)] + [(Ag Selling Price (US\$/oz) Ag Selling Cost (USD/Oz)) x (Ag grade (g/t)/31.1035)) x Ag Recovery (%)] and Cost = Mining Cost (US\$/t) + Process Cost (US\$/t) + Transport Cost (US\$/t) + G&A Cost (US\$/t) + [Royalty Cost (%) x Income]
- 8. In-situ bulk density were assigned to each model domain, according to samples averages for each lithology domain, separated by alteration zones and subset by oxidation.
- 9. All tonnages reported are dry metric tonnes and ounces of contained gold are troy ounces.
- 10. Mining recovery and dilution factors have not been applied to the Mineral Resource estimates.
- 11. The Mineral Resource was estimated by Mr. Peralta, B.Sc., FAusIMM CP (Geo), Independent Qualified Person under NI 43-101.
- 12. Mr. Peralta is not aware of any environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues that could materially affect the potential development of the Mineral Resource.
- 13. All figures are rounded to reflect the relative accuracy of the estimates. Minor discrepancies may occur due to rounding to appropriate significant figures.

QA/QC and Core Sampling Protocols

AbraSilver applies industry standard exploration methodologies and techniques, and all drill core samples are collected under the supervision of the Company's geologists in accordance with industry best practices. Drill core is transported from the drill platform to the logging facility where drill data is compared and verified with the core in the trays. Thereafter, it is logged, photographed, and split by diamond saw prior to being sampled. Samples are then bagged, and quality control materials are inserted at regular intervals at site; these include blanks and certified reference materials as well as duplicate core samples which are collected in order to assess sampling precision and reproducibility. Groups of samples are then placed in large bags which are sealed with numbered tags in order to maintain a chain-of-custody during the transport of the samples from the project site to the laboratory.

All samples are received by the ASA (Alex Stewart Argentina) preparation laboratory in Salta, where they are prepared, then the pulp sachet is directly dispatched to its facility in Mendoza, Argentina, where they are analyzed. All samples are analyzed using a multi-element technique consisting of a four-acid digestion followed by ICP/AES detection, and gold is analyzed by 50g Fire Assay with an AAS finish. Silver results greater than 100g/t are re-analyzed using four acid digestion with an ore grade AAS finish.

Qualified Persons

David O'Connor P.Geo., Chief Geologist for AbraSilver, is the Qualified Person as defined by National Instrument 43-101 Standards of Disclosure for Mineral Projects, and he has reviewed and approved the scientific and technical information in this news release.

About AbraSilver

AbraSilver is an advanced-stage exploration company focused on rapidly advancing its 100%-owned Diablillos silver-gold project in the mining-friendly Salta province of Argentina. The current Measured and Indicated Mineral Resource estimate for Diablillos (tank leach-only) consists of 73.1 Mt grading 79 g/t Ag and 0.66 g/t Au, containing approximately 186Moz silver and 1.6Moz gold, with significant further upside potential based on recent exploration drilling. The Company is led by an experienced management team and has long-term supportive shareholders. In addition, the Company has an earn-in option and joint venture agreement with Teck on the La Coipita project, located in the San Juan province of Argentina. AbraSilver is listed on the Toronto Stock Exchange under the symbol "ABRA" and in the U.S. on the OTCQX under the symbol "ABBRF."

For further information please visit the AbraSilver Resource website at www.abrasilver.com, our LinkedIn page at AbraSilver Resource Corp., and follow us on X at www.x.com/abrasilver

Alternatively, please contact:

John Miniotis, President and CEO info@abrasilver.com

Tel: +1 416-306-8334

Cautionary Statements

This news release includes certain "forward-looking statements" under applicable Canadian securities legislation. Forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable, are subject to known and unknown risks, uncertainties, and other factors which may cause the actual results and future events to differ materially from those expressed or implied by such forward-looking statements. All statements that address future plans, activities, events or developments that the Company believes, expects or anticipates will or may occur are forward-looking information. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. When considering this forward-looking information, readers should keep in mind the risk factors and other cautionary statements in the Company's disclosure documents filed with the applicable Canadian securities regulatory authorities on SEDAR+ at www.sedarplus.ca. The risk factors and other factors noted in the disclosure documents could cause actual events or results to differ materially from those described in any forward-looking information. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

Neither the TSX nor its Regulation Services Provider (as that term is defined in the policies of the TSX) accepts responsibility for the adequacy or accuracy of this news release