March 2024

TSX-V: ABRA OTCQX: ABBRF

A High-Growth Silver and Gold Explorer

www.abrasilver.com

Disclaimers

This presentation is not directed to, or intended for distribution to or use by, any person or entity that is a citizen or resident or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction.

This presentation does not constitute or form a part of, and should not be construed as an offer, solicitation or invitation to subscribe for, underwrite or otherwise acquire, any securities of AbraSilver, nor shall it or any part of it form the basis of or be relied on in connection with any contract or commitment whatsoever.

The information in this presentation includes certain "forward-looking statements" under applicable Canadian securities legislation. Forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable, are subject to known and unknown risks, uncertainties, and other factors which may cause the actual results and future events to differ materially from those expressed or implied by such forward-looking statements. All statements that address future plans, activities, events or developments that the Company believes, expects or anticipates will or may occur are forward-looking information. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law. To the extent permitted by law, AbraSilver accepts no responsibility or liability for any losses or damages of any kind arising out of the use of any information contained in this presentation. Potential investors should make their own enquiries in relation to any investment decisions.

Cautionary Note to United States Readers Concerning Mineral Resources and Reserves:

The standards employed in estimating the mineral resources referenced in this document differ significantly from the requirements of the United States Securities and Exchange Commission (the "SEC") and the resource information reported may not be comparable to similar information reported by United States companies. The term "resources" does not equate to "reserves" and normally may not be included in documents filed with the SEC. "Resources" are sometimes referred to as "mineralization" or "mineral deposits." While the terms "mineral resource", "measured mineral resource", "indicated mineral resource" and "inferred mineral resource" are recognized and required by Canadian regulations, they are not defined terms under standards in the United States and normally are not permitted to be used in reports and registration statements filed with the SEC.

The estimation of measured, indicated and inferred mineral resources involves greater uncertainty as to their existence and economic feasibility than the estimation of proven and probable reserves. United States readers are cautioned (i) not to assume that measured or indicated resources will be converted into reserves and (ii) not to assume that estimates of inferred mineral resources exist, are economically or legally minable, or will be upgraded into measured or indicated mineral resources. It cannot be assumed that AbrPlata will identify any viable mineral resources on its properties or that any mineral reserves, if any, can be recovered profitably, if at all.

The terms "mineral reserve," "proven mineral reserve" and "probable mineral reserve" are Canadian mining terms defined in accordance with National Instrument 43-101 and the CIM Definition Standards on Mineral Resources and Mineral Reserves. These definitions differ from the definitions in Subpart 1300 of Regulation S-K and, generally, are not permitted to be used in reports and registration statements filed with the SEC.

As such, information contained in this document and the documents incorporated by reference herein concerning descriptions of mineralization and resources under Canadian standards may not be comparable to similar information made public by United States companies in SEC filings.

The Mineral Resources disclosed in this company presentation were estimated by Luis Rodrigo Peralta, B.Sc., FAusIMM CP(Geo), Independent Consultant. By virtue of his education and relevant experience, Mr. Peralta is a "Qualified Person" for the purpose of National Instrument 43-101. The Mineral Resources have been classified in accordance with CIM Definition Standards for Mineral Resources and Mineral Reserves. The Mineral Resources were reported in a press release dated November 28, 2023 and a full Technical is currently being prepared in accordance with NI 43-101 to be filed on SEDAR+ and the Company's website.

The technical information contained in this presentation has been approved by David O'Connor, PGeo. Mr O'Connor is a Member of the Australasian Institute of Mining and Metallurgy ("AusIMM"), and is a qualified person in accordance with National Instrument 43-101 Standards of Disclosure for Mineral Projects.

A High-Growth Silver & Gold Explorer

- Recent high-grade discovery of JAC deposit increasing resource size & grades
- PFS at Diablillos on track to be completed in Q1/24

Industry-Leading Track Record of Delivering Resource Growth

- Since 2020, ABRA has grown Diablillos' M&I resource by ~100%, at an avg discovery cost of only US\$0.11/oz AgEq (2)
- Large land package with multiple high-priority exploration targets

Robust Balance Sheet & Supportive Shareholders

- Healthy cash position of ~C\$7M (as of Sept. 30)
- Top Shareholder: Eric Sprott (~12%)

Attractive Valuation Upside & Strong Shareholder Support

CAPITALIZATION (as of Mar. 06, 2024)	
Basic Shares Outstanding	563M
Share Price (CAD)	\$0.32
Market capitalization	C\$180M
Cash (estimate at Sept. 30th)	~C\$7M
Average daily trading volume (FY 2023)	+1.3M
52-week high/low (CAD)	\$0.48/\$0.22

12%
4%
~30%
~55%

Analyst Coverage

VIII CAPITAL

Don DeMarco

Felix Shafigullin

Michael Curran

Christopher Ecclestone

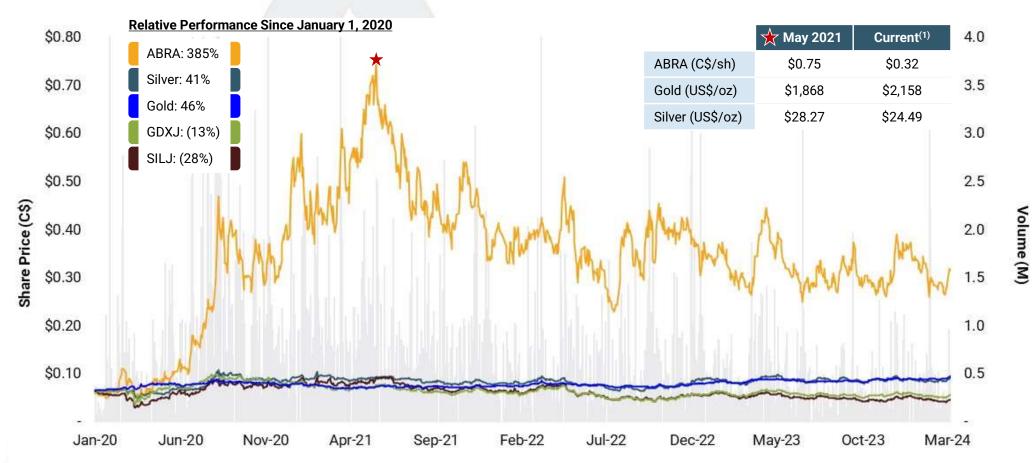
Multiple Near-Term Catalysts on the Horizon

Complete Pre-Feasibility Study at Diablillos (Q1)

Commence Phase IV Exploration Campaign

Drill results from large-scale La Coipita Cu porphyry project (partnership with Teck)

Advance technical studies and development plans


Significant Torque to Metal Prices

AbraSilver shares have meaningfully outperformed both the Junior Silver Miners ETF (SILJ) and Junior Gold Miners ETF (GDXJ) while demonstrating considerable leverage to metal prices

Relative Share Price Performance

2023 Highlights - A Transformational Year

Reports 258 Million SilverEquivalent Ounces Contained in M&I Categories, Substantially Increasing the Diablillos Mineral Resource Estimate

NOVEMBER

Positive Metallurgical Results for JAC With Recoveries Up To 93% Ag & 91% Au and intersects 10m at 520 g/t Ag

JUNE

Drilling Intersects 32m at 580 g/t AgEq and 17m at 829 g/t Ag

MAY

Reports Promising Initial Drill Results at Alpaca, JAC North and Fantasma Targets

NOVEMBER

Exploration Drilling Results at JAC and La Coipita Project; JAC Results Include 3m at 2,070 g/t Ag

JULY

Drilling at JAC Intersects 46.5m at 226 g/t AgEq Including 8.0m at 544 g/t AgEq

APRIL

Intersects Highest Grade Silver
Intercept of All-Time at Diablillos:
12,581 g/t Ag and 44.5 g/t Au over
1m

JANUARY

Metallurgical Optimization Significantly Increases Recovery Rates at Oculto to 82% - 86% Ag and 84% - 89% Au

OCTOBER

Drill Results at JAC including 148 g/t Ag Over 64m & Discovers Mineralization Beyond JAC, Intersecting 1,042 g/t Ag Over 12m

AUGUST

Drills Best Silver Intercept to Date at JAC, **32,481** g/t Ag over 1m Within Broader Intercept of **3,025** g/t Ag over 14m

MARCH

Intersects 797 g/t AgEq over 25m & 347 g/t AgEq over 26.5m, (incl. 1,055 g/t AgEq over 7m)

FEBRUARY

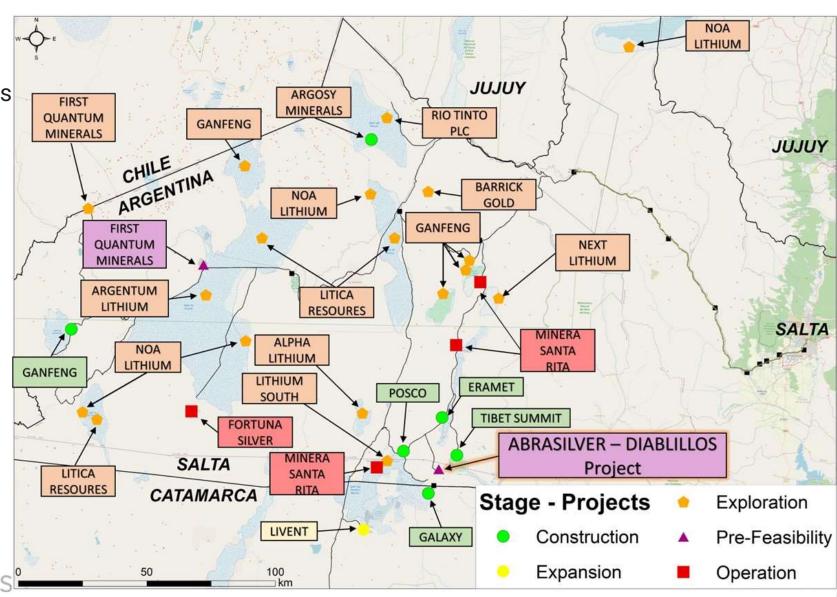
Salta Ranked #1 for Investment Attractiveness¹ in Latin America

Salta: Home to some of the largest global mining companies

ABRASILVER
RESOURCE CORP

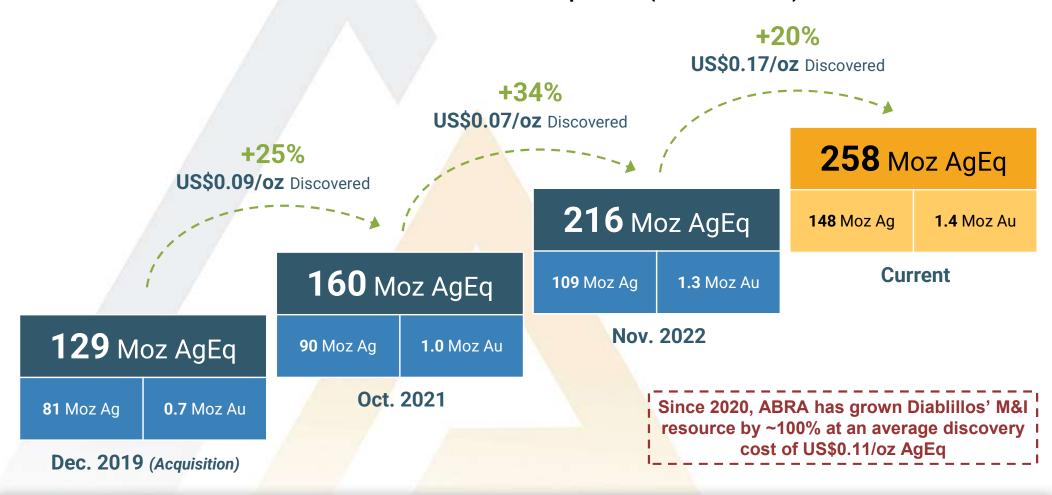
RIOTINTO

BARRICK



GanfengLithium

Large M&I Resources of 258Moz AgEq & Growing! ABI


Category	Tonnes (000 t)	Ag (g/t)	Au (g/t)	AgEq (g/t)	Contained Ag (k oz Ag)	Contained Au (k oz Au)	Contained AgEq (k oz AgEq)
Measured & Indicated	53,257	87	0.79	151	148,275	1,360	258,087
			Charles .		RAW WATER WI	-	
							IAIN WASTE DUMP
PV PLANT							
	PROCESS PLAN		LADE	RAS			
SERVICE HUB	4						
	ROM PAD			00	CULTO	13	
				1		1	
	ANTASI	1A	7			100	
		JAC NOR	тн.		I HIIII.		
							- /-
	ALPACA				JAC		
00m	THE STREET	THE STATE OF	3	111			
and the state of the second	5	00m	The same of the sa		SCHOOL MAN	1200	

Strong Record of Delivering Resource Growth

✓ Updated Diablillos M&I Resource of 258 Moz AgEq → represents an increase of 20% relative to the November 2022 resource – underpinned by the recently-discovered, high-grade JAC target

Diablillos Resource Growth Since Acquisition (M&I Contained)(1)(2)

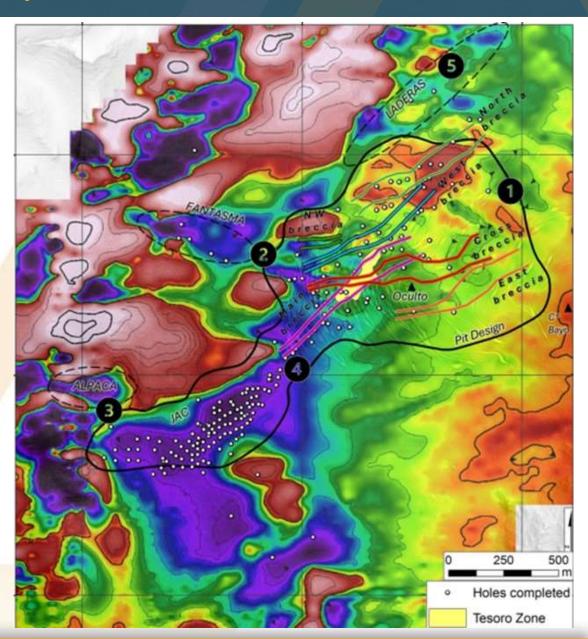
Source: Capital IQ; Corporate disclosure; National Bank Financial

Resource growth calculated based on AgEq and reflects Au:Ag ratio and metallurgical recoveries

^{2019-2021:} US\$2.7M (15,100m drilled); 2021-2022: US\$4.1M (18,500m drilled); 2022-2023: US\$7.3M (24,100m drilled); 2021-2022: US\$4.1M (18,500m drilled); 2022-2023: US\$7.3M (24,100m drilled); 2021-2022: US\$4.1M (18,500m drilled); 2021-2022: US\$4.1M (18,500m drilled); 2022-2023: US\$7.3M (24,100m drilled); 2021-2022: US\$4.1M (18,500m dril

Industry-Leading Drill Results ABRA: 6 of top 13 best results globally over past 3 Years

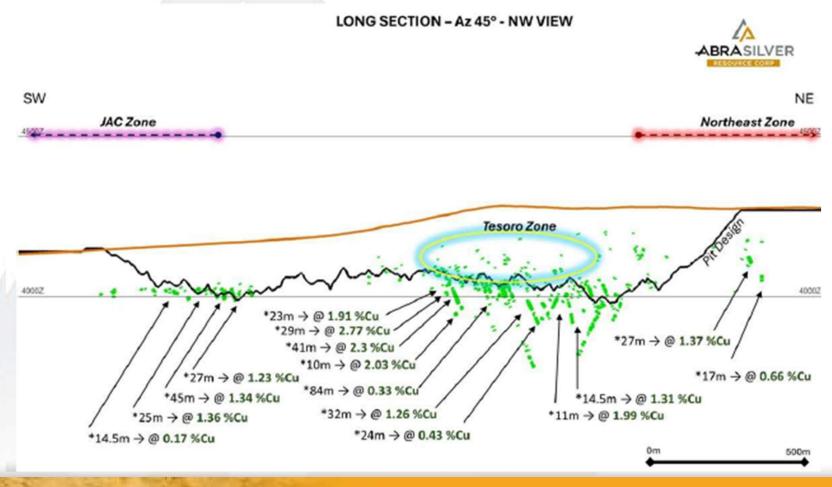
Top AgEq Intercepts – All Primary Silver Assets Globally (Jan. 2021 – Present)


	Company (Project)	Hole ID	Reported Date	Interval (m)	Grade (g/t AgEq)	Grade-Thickness (g/t AgEq x m)
1.	GGD (Los Ricos South)	LRGAG-22-218	2023-01-23	55.0	2,738	150,590
2.	AYA (Zgounder)	TD28-22-2000-308	2022-12-21	21.6	3,956	85,450
3.	ABRA (Diablillos)	DDH-22-045	2022-09-29	127.0	669	84,963
4.	PAAS (La Colorada)	D-96-03-22	2022-07-21	295.5	234	69,147
5.	ABRA (Diablillos)	DDH-22-015	2022-07-25	26.0	2,387	62,062
6.	AYA (Zgounder)	TD28-22-2030-042	2022-04-21	14.4	4,101	59,054
7.	AYA (Zgounder)	TD28-22-2000-305	2022-12-21	9.6	5,691	54,634
8.	ABRA (Diablillos)	DDH-22-027	2021-03-15	103.0	528	54,384
9.	Kuya (Silver Kings)	23-SK-08	2023-04-04	3.0	16,838	50,514
10.	ABRA (Diablillos)	DDH-22-037	2022-08-22	155.0	307	47,585
11.	HYMC (Hycroft)	H23R-5753	2023-11-16	85.3	553	47,171
12.	ABRA (Diablillos)	DDH-22-043	2022-09-29	23.0	1,962	45,126
13.	ABRA (Diablillos)	DDH-22-004	2022-04-11	140.0	315	44,100

District-Scale Potential: Mineralization Open in Multiple Directions

- Multiple targets to expand high-grade zones around Oculto & JAC pit shells:
 - Continuity of high grades within Oculto pit shell
 - Extension of Fantasma Zone towards Oculto
 - 3. Connection of Alpaca to JAC
 - 4. Oculto-JAC connection
 - 5. Laderas expansion

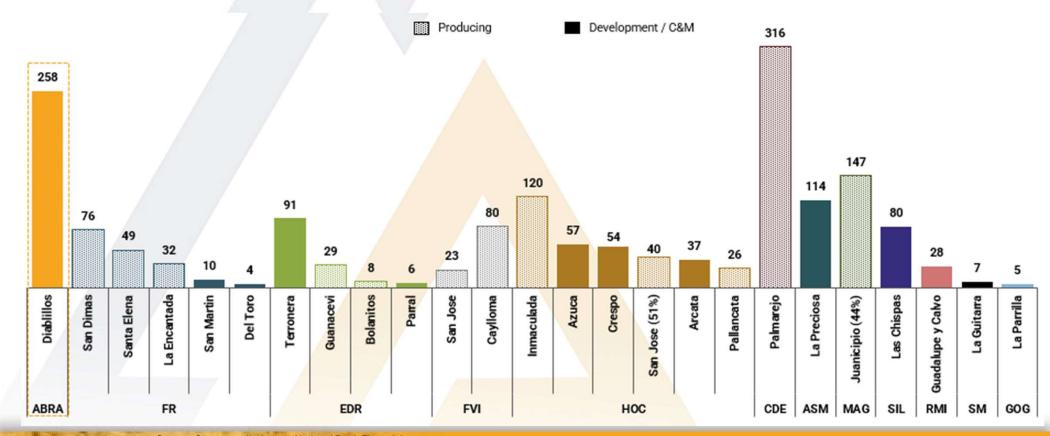
Additional potential exists for new mineralized zones, including untested Jasperoid trend to the north


High Grade Cu & Au Intercepts in Sulphides - Remain Largely Untested

A Beneath the oxide gold zone, we've intersected several high-grade Cu/Au sulphide intercepts

 \triangle The sulphide zone currently extends for ~ 2 km, and remains largely untested

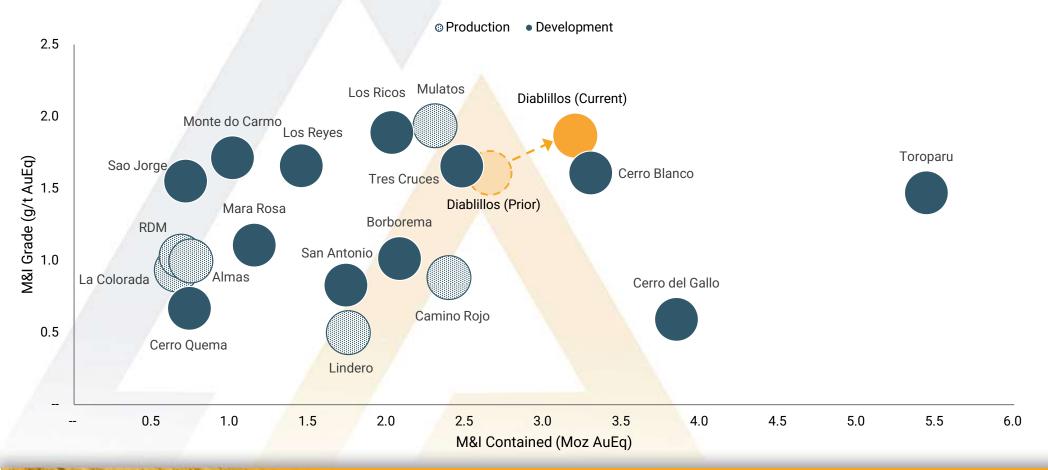
A Represents a significant exploration target which will be evaluated in future drill campaigns


Diablillos - Large Scale Silver Resource With Significant Upside Potential

A Diablillos boasts a significant M&I Resource compared to other primary silver assets in Latin America

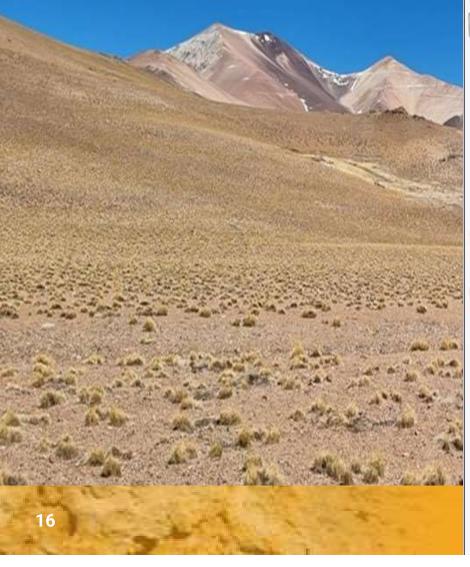
Numerous smaller-scale assets are either being operated or developed by mid-tier silver producers

Diablillos Compared to Select Primary Silver Assets in Latin America (M&I Contained - Moz AgEq)(1)



Diablillos: A Stand-Out High-Grade Project

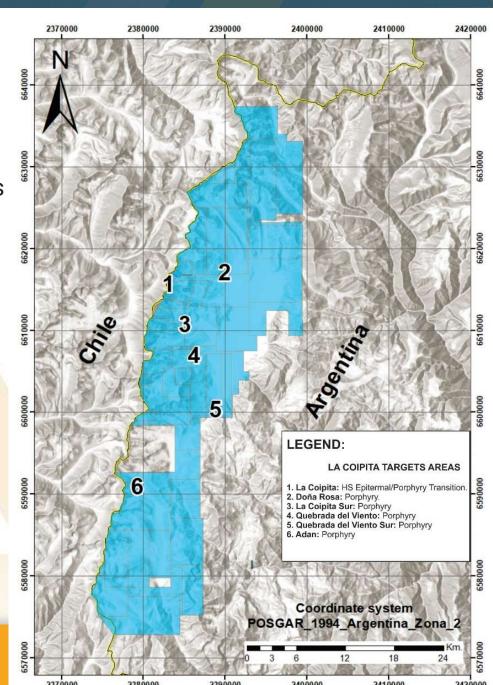
Diablillos contains an M&I resource totalling 3.2 Moz AuEq at 1.9 g/t AuEq making it one of the largest and highest-grade open pit assets utilizing conventional CIL/CIP/Leach processing in Latin America


Select Comparable Open Pit Precious Metal Assets in Latin America

La Coipita Project (San Juan, Argentina)

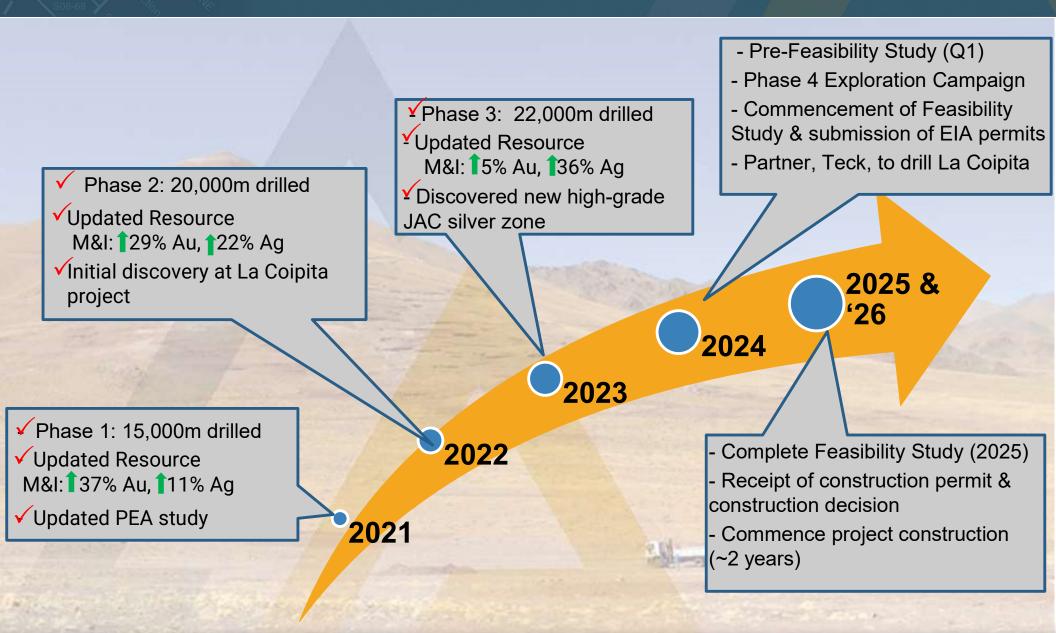
ABRA owns an option to acquire a large +70,000 ha project in one of the world's most endowed Cu-Au belts (e.g. Filo del Sol, Los Azules, Pelambres)

La Coipita - Partnership with Teck Resources



ABRA intersected large-scale Cu porphyry:

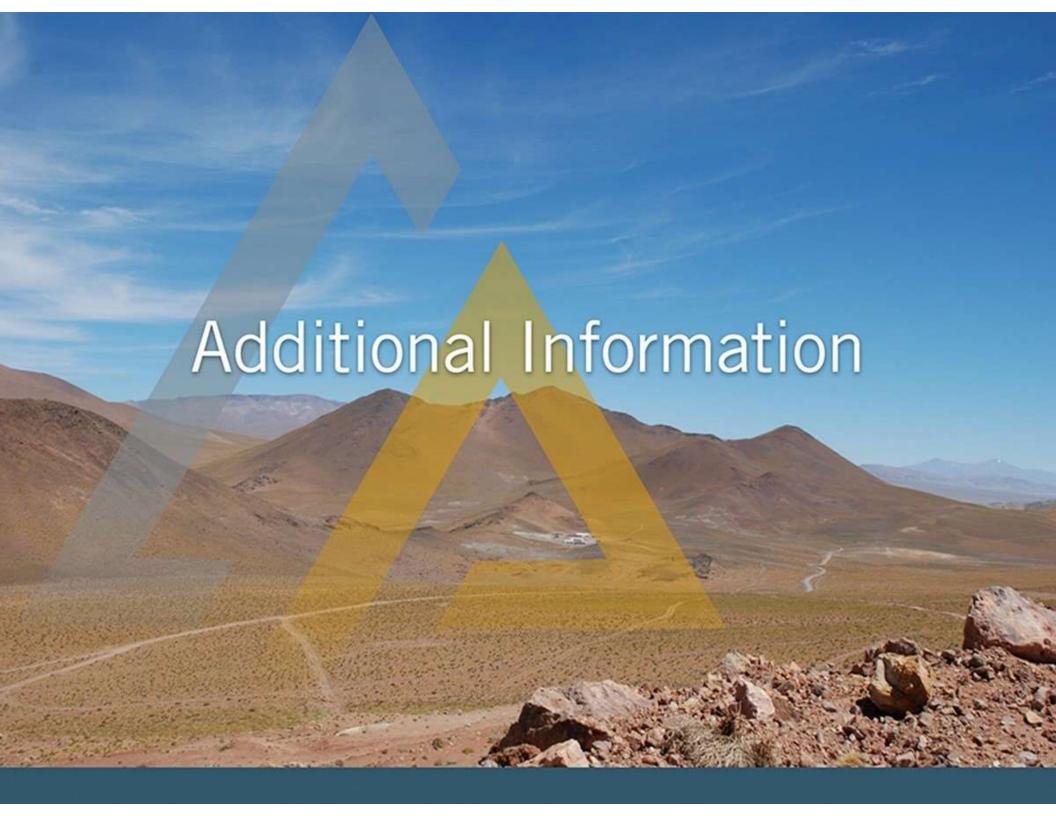
- 226m of 0.34% Cu, 0.07 g/t Au & 66 ppm Mo
- 4 694m of 0.16% Cu & 81 ppm Mo
- Surface geochemistry dimensions of 2,000 metres x 1,500 metres


Teck has option to earn an 80% interest by:

- Funding US\$20M in exploration over 5 years
- Cash payments & equity placement in ABRA totaling US\$3M
 - \$500k upfront payment (paid)
 - \$1.0M equity placement in ABRA by Jan. 31, 2025 (at a 25% premium to VWAP)
 - 4 \$1.5M cash payment by Jan. 31, 2028
- Making up to US\$6.3M in optional cash payments to underlying project vendors

Creating Shareholder Value Through Execution

Key Drivers for Investing


Large Resource Base With Excellent Exploration Upside¹: M&I Resources of 53.3Mt at 87 g/t Ag and 0.79 g/t Au for +148 Moz Ag and 1.4 Moz Au

Right Jurisdiction: 2021 Fraser Institute #1 most attractive jurisdiction in Latin America, with billions of dollars being spent in new investment in Salta

Strong Balance Sheet: Cash position of ~ CAD\$7M (as at Sept 30 2023), fully funded to add value through ongoing exploration campaigns

Top Tier Shareholders: Strong support from strategic and large institutional investors (Eric Sprott is largest shareholder ~12%)

Extensive Exploration Upside Potential: Numerous exploration targets to further expand mineral resources & define new mineralized zones

Management & Directors

Strong Team with Extensive Technical and M&A Expertise

Management

John Miniotis, Chief Executive Officer

18+ years of experience in the mining industry (Lundin Mining, AuRico Metals, Barrick, BMO) focused primarily on mergers & acquisitions, equity capital markets, IR & corp finance

David O'Connor, Chief Geologist

- 40+ years' experience acquiring, exploring, and developing mineral projects in South America & executive management
- Responsible for early exploration at the world-class Olympic Dam project

Klaus Zalewski, Senior VP Projects

Professional civil engineer with 40 years of experience in the construction and mining industries, focusing on project and operations management, leading PFS and BFS level technical studies

Carlos Pinglo, Chief Financial Officer

25+ years experience in financial management with a focus on Latin American jurisdictions

Eugenio Ponte, Country Manager

25+ years experience primarily focused in environmental and corporate social responsibility in various projects throughout Argentina

Board

Rob Bruggeman CANSTAR Chairman

Jens Mayer Director

Flora Wood Director

Stephen Gatley Director

Hernán Zaballa Director

Sam Leung Director

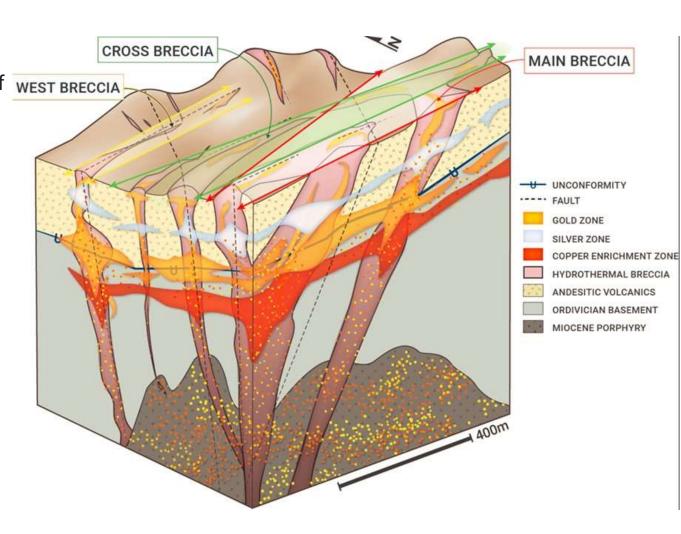
Nicholas Teasdale Director

Large M&I Resource: ~260M oz Silver-Equivalent ABF

Deposit	Zone	Category	Tonnes (000 t)	Ag (g/t)	Au (g/t)	AgEq (g/t)	Contained Ag (k oz Ag)	Contained Au (k oz Au)	Contained AgEq (k oz AgEq)
		Measured	12,170	101	0.95	178	39,519	372	69,523
		Indicated	34,654	64	0.85	133	71,306	947	147,748
Oculto	Oxides	Measured & Indicated	46,824	74	0.88	145	111,401	1,325	218,335
		Inferred	3,146	21	0.68	76	2,124	69	7,677
		Measured	1,870	210	0.17	224	12,627	10	13,452
		Indicated	3,416	198	0.12	208	21,744	13	22,808
JAC	Oxides	Measured & Indicated	5,286	202	0.13	212	34,329	22	36,191
		Inferred	77	77	•	77	190	ı	190
		Measured	-	-	•	-	-		-
		Indicated	683	105	•	105	2,306	,1	2,306
Fantasma	Oxides	Measured & Indicated	683	105	i	105	2,306	ı	2,306
		Inferred	10	76	•	76	24	•	24
		Measured	•	-	•	-		·	-
		Indicated	464	16	0.91	89	239	14	1,334
Laderas	Oxides	Measured & Indicated	464	16	0.91	89	239	14	1,334
		Inferred	55	43	0.57	89	76	1	157
Total Oxid		Measured	14,040	116	0.85	184	52,146	382	82,975
		Indicated	39,217	76	0.77	138	95,594	974	174,196
	Oxides	Measured & Indicated	53,257	87	0.79	151	148,275	1,360	258,087
		Inferred	3,288	23	0.66	76	2,415	70	8,049

Oculto Geological Model

Epithermal Ag-Au Deposit with Cu-Au Porphyry Intrusive


Diablillos property has multiple epithermal and porphyry targets

Oculto Zone contains majority of the resources and has over 120,000 m of drilling, but only down to a depth of ~400 m

Past drilling focused on the high sulphidation epithermal zone, hosted in volcanics and mostly oxidized

A Recent drilling confirmed that hydrothermal breccias continue into the basement and contain copper and gold mineralization in sulphides

Strong possibility of a porphyry intrusive nearby

Diablillos - Excellent Access to Infrastructure

- Located in an established mining camp that includes multiple lithium and borate mining operations
- Accessible by good all-weather gravel roads with nearby airstrip (~25 km)
- A natural gas pipeline built to supply mining projects like Diablillos is located 34 km from the project. Currently evaluating solar power energy for Diablillos
- Pump testing shows sufficient subterranean water available near the project with easements in place
- No communities on or near property low permitting risk with EIA permits expected to be submitted in H1/2024

Conventional Process Flowsheet

A Process design will consist of a conventional silver/gold oxide processing plant flowsheet:

Crushing, grinding, gravity concentration and intense cyanidation circuit, cyanide leaching with oxygen addition, counter current decantation ("CCD") washing thickeners and Merrill-Crowe precious metal recovery from solution followed by on-site smelting to doré bars.

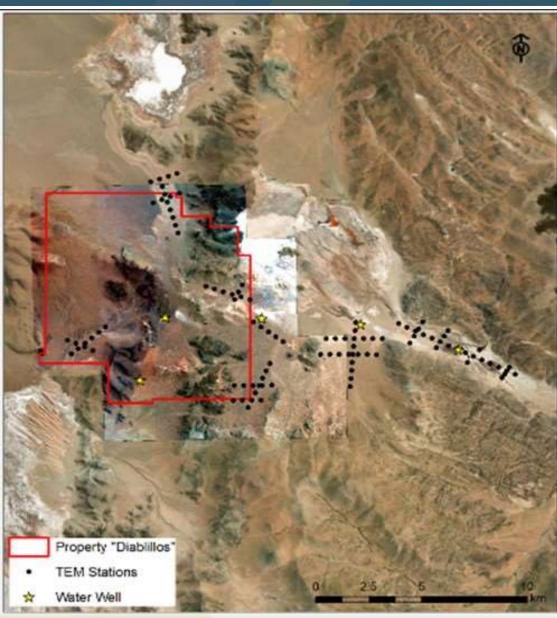
DIABLILLOS - SILVER GOLD PROJECT THICKENER DETOX BARREN SOLUTION CROWE SLAG CONCENTRATED CYANIDATION SOLUTION DORE (Au - Ag) SIMPLIFIED FLOW PROCESS

Excellent Metallurgical Testwork Results

- At Oculto, recoveries expected to range between 82% 86% for silver and 84% 89% for gold
 - A significant increase over the avg recovery rates of 73.5% for silver and 86% for gold used in the 2022 Preliminary Economic Assessment ("PEA").
- At JAC & Fantasma, expected recoveries between 86% 93% for silver and 82% 91% for gold
- A substantial percentage of the silver and gold can be recovered by gravity separation which
 results in higher recovery rates and lower processing costs
- Fine grinding is not necessary with the most efficient recoveries achieved at a grind size of 150 microns for both gravity and cyanidation and an optimal retention time of 36 hours.
- Overall silver and gold recoveries could likely be increased further by grinding finer and with higher cyanide concentrations. Further metallurgical testwork & trade-off studies now underway

Recoveries_	Oculto PFS Testwork (Oct. 2023)	JAC & Fantasma (May 2023)	Oculto PEA Study (Jan.2022)
Gold	84% - 89%	82% - 91%	86.0%
Silver	<mark>82% -</mark> 86%	<mark>86% - 93</mark> %	73.5%
Comments	Gravity + Cyanidation	Gravity + Cyanidation	Cyanidation Only

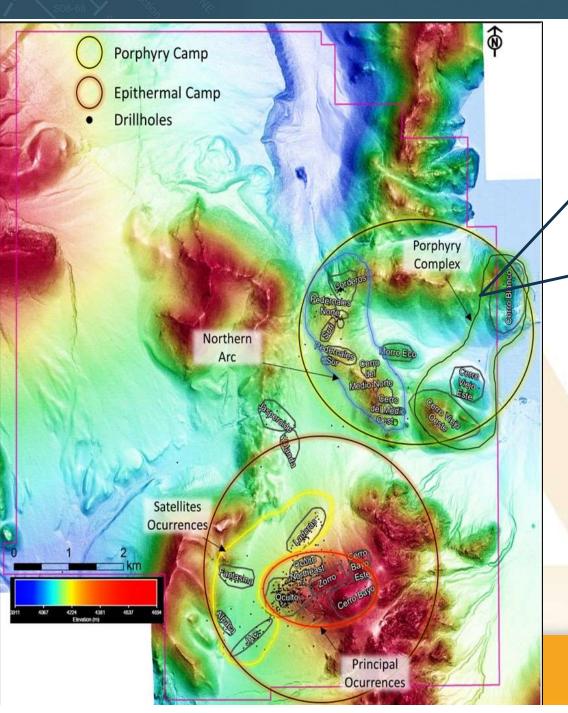
Water Easements in Place

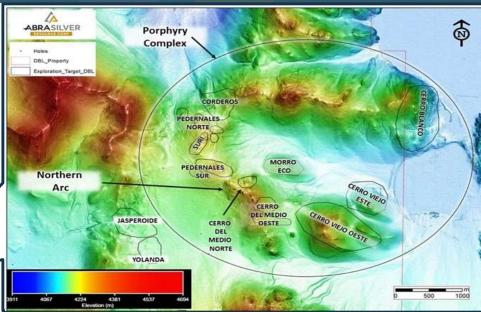


Abundant nearby fresh water with easements in place

Easements already in place for several wells with applications being prepared for additional easements

Adequate supply identified for up to a 9,000 tpd operation with plans to explore for additional water resources





Diablillos District-Scale Exploration Potential

Untested Porphyry Camp to the North

Irregular quartz veinlet cut by D-type jarosite-after-pyrite veinlet (dark brown), showing sericitic halo (grey), DAR-90-050 drill platform, Cerro Viejo

Visualization of Conceptual Open Pits and Proposed Site Infrastructure at Diablillos

La Coipita Option Payment Schedule

The Company has entered into two separate option agreements with arm's length private owners to acquire a 100% interest in La Coipita. First agreement, announced on March 2, 2020:

Timing	Payments (US\$)
Paid upon signing	\$65,000
March 2021 (paid)	\$100,000
March 2022 (paid)	\$200,000
March 2023 (paid)	\$400,000
March 2024 (paid)	\$1,000,000
March 2025	\$2,500,000

Second agreement, announced on August 17, 2021:

Timing	Payments (US\$)
Paid upon signing	\$50,000
August 2022 (paid)	\$75,000
August 2023 (paid)	\$100,000
August 2024	\$500,000
August 2025	\$800,000
August 2026	\$1,500,000

Capital Structure (as of Dec. 2023)

	Outstanding (M)	Price	Potential Proceeds (CAD\$ M)	Expiry
Basic Shares Outstanding	563			
Warrants:				
	6	\$0.10	\$0.6	Apr. 18, 2024
	2	\$0.37	\$0.6	Jun. 6, 2024
	14	\$0.50	\$6.8	Dec. 6, 2024
Total Warrants	21	\$0.38	\$8.3	
Total Options	25	\$0.25	\$6.1	Present – Feb. '28
Fully Diluted Shares	609			

